Journal of Organometallic Chemistry, 94 **(1975)** *C43-C46 o Ekevier* **Sequoia S-A., Lausanne - Printed in The Netherlands**

Preliminary communication

FLUXIONAL BEHAVIOR OF THE BRIDGING VINYL GROUP IN $HOs₃(CO)₁₀(CHCH₂)$ AND RELATED COMPLEXES

J.R. SHAPLEY^{*}, S.I. RICHTER, M. TACHIKAWA and J.B. KEISTER School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801 (U.S.A.) **(Received May 27th, 1975)**

Summary

¹³C NMR spectra of the cluster complexes $HOs₃(CO)₁₀(CH=CHR)$ establish that the σ and π bonds binding the bridging vinylic group are rapidly inter**changed between the bridged osmium atoms.**

Although the scram bling processes exhibited by carbonyl ligands bound to metal cluster units are receiving considerable attention, reports of rapid intracluster rearrangements for hydrocarbon ligands are relatively rare [1-4]. We [5] **(and others [S, 73) have prepared a set of osmium cluster complexes of the** formula $HOS₃(CO)₁₀(CH=CHR)$ and proposed a structure with the vinyl group bound unsymmetrically to one edge of the metal triangle via a σ bond to one osmium atom and a π bond to the second osmium atom. We now report on ¹³C **NMR spectra of these complexes that reveal the operation of a fluxional process** wherein the σ and π bonds are interchanged (see Fig. 1).

The ¹³C-{¹H} NMR spectra (carbonyl region) obtained for $HOs₃(CO)_{10}^-$ **(CH=CH,) at various temperatures are shown in Fig. 2_ Limiting spectral data are summarized in Table 1. As the temperature is raised from -67 "C**

Fig. 1. Fluxional process proposed for the complexes $HOs₃(CO)₁₀(CH=CHR)$.

 $C44$ $+28°$ HHPANY yyyyy y yyyyy -35° М **LAW** juli -42° Lympa^{ch}langmarth 柳柳柳 white that H $-48°$ Myromeny muchly $-59°$ **Support May! Arithm** $-67°$ illi I М 1766 ₁₇₃₉ ا
1845 ر
165.6 pom $\frac{1}{2}$ 1510

Fig. 2. ¹³C NMR spectra (carbonyl region) for $\mathrm{HOs}_3(\mathrm{CO})_{10}(\mathrm{CH=CH}_2)$.

TABLE 1

LIMITING ¹³C NMR DATA FOR HOS, (CO)₁₀(CH=CH₂)^a

 a Obtained in CD₂Cl₂ on a Varian XL-100 instrument. b Downfield from TMS, referenced to CD₂Cl₂ = **54.0. cSpectnun obtained in CDCI,. proton decoupler off.**

resonances arising from six individual carbons (3a, 3b; 5a, 5b; 6b; 5a **overlaps 4) broaden and coalesce pair-wise to form three two-carbon singlets at 28 "C. The signals (1,2,4) for the the remaining four carbonyl carbons do not change significantly over this temperature range.**

The spectrum observed at -67 °C for $HOs₃(CO)₁₀(CH=CH₂)$ is entirely consistent with the nonsymmetric structure diagrammed in Fig. 1 ($R = H$). **The single** carbon peaks (1,2), which are unchanged with temperature, are i assigned to the axial carbonyls of the $Os(CO)_a$ moiety (E,F) ; the two-carbon **portion (4) of the resonance at 173.9 ppm is assumed to be a coincidentally** isochronous pair of signals from the equatorial carbonyls (D/D'). The signals **that undergo coalescence are assigned to the three pairs of carbonyls flanking** the edge bridged by the hydride ligand and the vinyl group $(A/A', B/B', C/C')$. **Support fir this assignment comes from the hydridecarbonyl coupling constants (measured at room temperature, see Table l), which are uniformly larger for the set of coalesced signals.**

Inspection of the spectra in Fig. 2 at temperatures between -67 "C and 28 "C suggests that the pairs of signals 3a/3b, 5a/5b, and 6a/6b are averaged by the same dynamic process. In support of this point, free energies of activation derived from each pair of signals are indistinguishable $(\Delta G_c^* = 10.3 \text{ kcal mol}^{-1})^*$. **The** fhxional process **diagrammed in Fig. 1 is completely consistent with the** spectral behavior. Interchange of the vinyl bonding mode $(\sigma \rightarrow \pi, \pi \rightarrow \sigma)$ between **the bridged metal atoms would equilibrate the carbonyl environments pairwise between the two remaining edges of the triangle (A/A', B/B', C/C', D/D')** but **would not equilibrate a carbonyl site above the plane of the triangle with one** below (E_nF). The rearrangement may be pictured as proceeding via an inter**mediate configuration in which the plane of the vinyl group is perpendicular to the bridged osmium-osmium bond. Conceptually, the process may be viewed**

 $*\Delta G_{\rm c}^{\pm}$ calculated from the relations $k_{\rm c} = \pi \Delta \nu / \sqrt{2}$ and $k_{\rm c} = (k_{\rm b}T_{\rm c}/\hbar) \exp(-\Delta G_{\rm c}^{\pm}/RT_{\rm c})$.

as the prototype for other hydrocarbon ligand rearrangements that involve interchange of formal σ and π bonds [3, 8-10].

.

The complexes $HOs₃(CO)₁₀(CH=CHR)$ ($R = C₂H₅, C₆H₅$) each display a **carbonyl =C NMR spectrum at room temperature completely anaIogous to that** observed for $HOs₃(CO)_{10}$ (CH=CH₂) (Table 1). Hence, the fluxional σ , π -inter**change process is inferred to be a generaI property of such bridging vinylic groups. Interestingly, aIthough the prochiral groups in the complexes** $HOS₃(CO)₁₀(CH=CHR)$ [R = $CH₂CH₃$, $CH(CH₃)₂$] would be diastereotopic in **the static structure, no evidence for anisochronicity in the methylene or methyl** ¹H (100 MHz) NMR signals could be established down to -90 °C. Therefore, ¹³C NMR is uniquely suited to reveal the dynamic behavior of these compounds.

Acknowkdgment

Acknowledgment is made to the Research Corporation and to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research. A generous loan of osmium trichloride from EngeIhard Industries is also acknowledged-

References

- 1 **F-A_ Cotton. A.. Davison and A_ Musco. J_ Amer. Chem. Sot., 89 (1967) 6796.**
- **2 T- Yamamoto. A.R. Gerber. G.M. Bodner. L.J. Todd. M.D. Rausch and S.A. Gardner. J. Organometal.** Chem., 56 (1973) C23.
- **3 A.J. Deeming. R.E. Kimber end,M: Underhi& J. Chem. SOC- D&On. (1973) 2589.**
-
- **4 5 S_A_R Kaor and F.G.A_ Stone. Accounts Chem. Res.. 7 (1974) 321- J-B_ fEeistekand J-R_ Shapley, J. Orgaxzometai. Chem.. 85 <1975) C29; M- Tachikawa and J-R Shipley. unpublished work.**
- **6** A.J. Deeming, S. Hasso and M. Underhill, J. Organometal. Chem., 80 (1974) C53.
- 7 W.G. Jackson, B.F.G. Johnson, J.W. Kelland, J. Lewis and K.T. Schorpp, J. Organometal. Chem. **87 (1975) C27-**
- **8 R Case. RRIL Jones. N-V_ Schwartz and &KC_ Whiting. Proc. Chem- SOC_. (1962) 256.**
- **9 M. Rosenblum. W.P_ Giering. B. North and D- We%. J_ OrganometaL Chem.. 28 (1971) Cl?_**
- **10 R Aumann. Angew. Chem_ Intern_ Edit.. 10 (1971~560.**